试题

题目:
青果学院如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴,给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是
②③④
②③④
.(填上你认为正确结论的所有序号)
答案
②③④

解:由抛物线的开口方向向上可推出a>0;
因为对称轴在y轴右侧,对称轴为x=-
b
2a
>0,
又∵a>0,
∴b<0;
∵抛物线与y轴的交点在y轴的负半轴上,
∴c<0,故abc>0,∴①错误;
∵由图象可知:对称轴x=-
b
2a
>0且对称轴x=-
b
2a
<1,
∴-b<2a,∴2a+b>0,∴②正确;
∵由题意可知:当x=-1时,y=2,∴a-b+c=2,
当x=1时,y=0,∴a+b+c=0.
a-b+c=2与a+b+c=0相加得2a+2c=2,即a+c=1,移项得a=1-c,又∵a>0,c<0,∴a>1,∴③④正确.
故答案为:②,③,④.
考点梳理
二次函数图象与系数的关系.
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
本题考查了二次函数图象与系数的关系的应用.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=-
b
2a
判断符号.
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
找相似题