试题
题目:
若二次函数y=ax
2
+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则y=a+b+c的取值范围是
0<y<2
0<y<2
.
答案
0<y<2
解:∵二次函数y=ax
2
+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),
∴易得:c=1,a-b+c=0,a<0,b>0,
由a=b-1<0得到b<1,结合上面b>0,所以0<b<1①,
由b=a+1>0得到a>-1,结合上面a<0,所以-1<a<0②,
∴由①②得:-1<a+b<1,且c=1,
得到:0<a+b+c<2,
则y=a+b+c的取值范围是0<y<2.
故答案为:0<y<2
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系.
由二次函数的解析式可知,当x=1时,所对应的函数值y=s=a+b+c.把点(0,1),(-1,0)代入y=ax
2
+bx+c,得出c=1,a-b+c=0,然后根据顶点在第一象限,可以画出草图并判断出a与b的符号,进而求出y=a+b+c的变化范围.
此题考查了二次函数图象与系数的关系,解答的关键是根据题意画出草图,利用数形结合的思想解题.
计算题;压轴题;数形结合.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
(2013·漳州)二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
(2013·岳阳)二次函数y=ax
2
+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是( )
(2013·黔东南州)二次函数y=ax
2
+bx+c的图象如图所示,则下列结论正确的是( )
(2013·齐齐哈尔)已知二次函数y=ax
2
+bx+c(a≠0)的图象经过点(x
1
,0)、(2,0),且-2<x
1
<-1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b
2
>4ac;③2a+b+1<0;④2a+c>0.则其中正确结论的序号是( )