答案
①
②③
解:(1)由函数图象可得:抛物线开口向上,与y轴交点在y轴负半轴,抛物线与x轴有两个交点,
∴a>0,c<0,b
2-4ac>0,故选项①正确,②错误;
∵图象对称轴为直线x=1>0,
∴a,b异号,
∴b<0,故③错误,
故答案为:①;
(2)①∵图象对称轴为直线x=1,且图象与x轴负半轴交点坐标在-1到-2之间,
∴图象与x轴正半轴交点坐标在3到4之间,
利用图象得出x=3时,对应y的值小于0,则:①9a+3b+c<0正确;
当x=3时函数值小于0,y=9a+3b+c<0,且x=-
=1,

即a=-
,代入得9(-
)+3b+c>0,
得2c>3b,故②正确;
③∵对称轴x=-
=1,
∴b=-2a,
可将抛物线的解析式化为:y=ax
2-2ax+c(a≠0);
由函数的图象知:当x=-2时,y>0;即4a-(-4a)+c=8a+c>0,故本选项正确;
故答案为:①②③.