试题
题目:
小明同学观察如图所示的二次函数y=ax
2
+bx+c的图象后,得出了下面四条信息:
(1)b
2
-4ac>0;(2)c>1;(3)2a-b<0;(4)a-b+c<0.
你认为其中正确的有( )
A.2个
B.3个
C.4个
D.1个
答案
A
解:(1)根据图示知,该函数图象与x轴有两个交点,
∴△=b
2
-4ac>0;
故本选项正确;
(2)由图象知,该函数图象与y轴的交点在点(0,1)上,
∴c=1;故本选项错误;
(3)由图示,知
对称轴x=-
b
2a
>-1;
又函数图象的开口方向向下,
∴a<0,
∴-b<-2a,即2a-b<0,
故本选项正确;
(4)根据图示可知,当x=-1,即y=a-b+c>0,
∴a-b+c>0;
故本选项错误;
综上所述,我其中正确的有2个;
故选:A.
考点梳理
考点
分析
点评
二次函数图象与系数的关系.
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
(2013·漳州)二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
(2013·岳阳)二次函数y=ax
2
+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是( )
(2013·黔东南州)二次函数y=ax
2
+bx+c的图象如图所示,则下列结论正确的是( )
(2013·齐齐哈尔)已知二次函数y=ax
2
+bx+c(a≠0)的图象经过点(x
1
,0)、(2,0),且-2<x
1
<-1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b
2
>4ac;③2a+b+1<0;④2a+c>0.则其中正确结论的序号是( )