试题
题目:
(2004·潍坊)已知二次函数y=ax
2
+bx+c的图象如图所示,则a、b、c满足( )
A.a<0,b<0,c>0
B.a<0,b<0,c<0
C.a<0,b>0,c>0
D.a>0,b<0,c>0
答案
A
解:根据二次函数图象的性质,
∵开口向下,
∴a<0,
∵与y轴交于正半轴,
∴c>0,
又∵对称轴x=-
b
2a
<0,
∴b<0,
所以A正确.
故选A.
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系.
由于开口向下可以判断a<0,由与y轴交于正半轴得到c>0,又由于对称轴x=-
b
2a
<0,可以得到b<0,所以可以找到结果.
考查二次函数y=ax
2
+bx+c系数符号的确定.
压轴题.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
(2013·漳州)二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
(2013·岳阳)二次函数y=ax
2
+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是( )
(2013·黔东南州)二次函数y=ax
2
+bx+c的图象如图所示,则下列结论正确的是( )
(2013·齐齐哈尔)已知二次函数y=ax
2
+bx+c(a≠0)的图象经过点(x
1
,0)、(2,0),且-2<x
1
<-1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b
2
>4ac;③2a+b+1<0;④2a+c>0.则其中正确结论的序号是( )