试题
题目:
六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.按照这样的规定,每掷一次该小立方体,就得到平面内的一个点的坐标.已知小明前两次掷得的两个点能确定一条直线,且这条直线经过点P(4,7),那么他第三次掷得的点也在直线上的概率是( )
A.
2
3
B.
1
2
C.
1
3
D.
1
6
答案
A
解:由题意知:每掷一次可能得到6个点的坐标是(其中有两个点是重合的):
(1,1),(1,1),(2,3),(3,2),(3,5),(5,3),
通过描点和计算可以发现,经过(1,1),(2,3),(3,5)三点中的任意两点所确定的直线都经过点P(4,7),
所以小明第三次掷得的点也在直线上的概率是
4
6
=
2
3
.
故选A.
考点梳理
考点
分析
点评
专题
概率公式;一次函数图象上点的坐标特征.
根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.
对本题来说,我们首先得出总共有多少个点,然后通过计算找出满足条件的点,再根据概率公式求解.
本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
m
n
.
计算题;方案型.
找相似题
(2013·铜仁地区)一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是( )
(2013·南充)有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是( )
(2013·大连)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为( )
(2013·本溪)下列说法中,正确的是( )
(2012·枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是
2
3
,则黄球的个数为( )