试题
题目:
(2011·湘潭)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件.
(1)有多少种购买方案?请列举所有可能的结果;
(2)从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.
答案
解:(1)设钢笔和笔记本两种奖品各a,b件
则a≥1,b≥1,
2a+b=15
当a=1时,b=13;
当a=2时,b=11;
当a=3时,b=9;
当a=4时,b=7;
当a=5时,b=5;
当a=6时,b=3;
当a=7时,b=1.
故有7种购买方案;
(2)买到的钢笔与笔记本数量相等的购买方案有1种,共有7种购买方案.
∵1÷7=
1
7
,
∴买到的钢笔与笔记本数量相等的概率为
1
7
.
解:(1)设钢笔和笔记本两种奖品各a,b件
则a≥1,b≥1,
2a+b=15
当a=1时,b=13;
当a=2时,b=11;
当a=3时,b=9;
当a=4时,b=7;
当a=5时,b=5;
当a=6时,b=3;
当a=7时,b=1.
故有7种购买方案;
(2)买到的钢笔与笔记本数量相等的购买方案有1种,共有7种购买方案.
∵1÷7=
1
7
,
∴买到的钢笔与笔记本数量相等的概率为
1
7
.
考点梳理
考点
分析
点评
专题
二元一次方程的应用;概率公式.
(1)应设出两种奖品的件数,由钢笔和笔记本两种奖品的价格为15元列出方程,根据整数值来确定购买方案;
(2)根据概率公式P(A)=
事件A可能出现的结果数
所有可能出现的结果数
,求解即可.
考查了二元一次方程的应用和概率公式.解决问题的关键是读懂题意,找到所求的量的等量关系.注意根据整数值来确定购买方案.
应用题.
找相似题
(2013·铜仁地区)一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是( )
(2013·南充)有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是( )
(2013·大连)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为( )
(2013·本溪)下列说法中,正确的是( )
(2012·枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是
2
3
,则黄球的个数为( )