试题

题目:
(2007·茂名)已知-纸箱中放有大小均匀的x只白球和y只黄球,从箱中随机地取出一只白球的概率是
2
5

(1)试写出y与x的函数关系式;
(2)当x=10时,再往箱中放进20只白球,求随机地取出一只黄球的概率P.
答案
解:(1)由题意得
x
y+x
=
2
5

即5x=2y+2x,
y=
3
2
x


(2)由(1)知当x=10时,y=
3
2
×10=15

∴取得黄球的概率P=
15
10+20+15
=
15
45
=
1
3

解:(1)由题意得
x
y+x
=
2
5

即5x=2y+2x,
y=
3
2
x


(2)由(1)知当x=10时,y=
3
2
×10=15

∴取得黄球的概率P=
15
10+20+15
=
15
45
=
1
3
考点梳理
概率公式;根据实际问题列一次函数关系式.
(1)根据概率的求法:已知-纸箱中放有大小均匀的x只白球和y只黄球,共x+y只球,如果从箱中随机地取出一只白球的概率是
2
5
,有
x
y+x
=
2
5
成立,化简可得y与x的函数关系式;
(2)当x=10时,y=10×
3
2
=15;再往箱中放进20只白球,此时有白球30只,即可求出随机地取出一只球是黄球的概率.
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
m
n
找相似题