试题
题目:
如图,PA,PB是⊙O的两条切线,A,B分别是切点,点C是⊙O上任意一动点(不与A、B重合),连接OA,OB,CA,CB,∠P=70°,则∠ACB=
55°或125°
55°或125°
.
答案
55°或125°
解:∵PA,PB是⊙O的两条切线,
∴OA⊥PA,OB⊥PB,
∴∠OAP=90°,∠OBP=90°,
而∠P=70°,
∴∠AOB=360°-90°-90°-70°=110°,
当点P在劣弧AB上,则∠ACB=
1
2
∠AOB=55°,
当点P在优弧AB上,则∠ACB=180°-55°=125°.
故答案为55°或125°.
考点梳理
考点
分析
点评
专题
切线的性质.
根据切线的性质得到∠OAP=90°,∠OBP=90°,再根据四边形内角和得到∠AOB=110°,然后根据圆周角定理和圆内接四边形的性质求∠ACB的度数.
本题切线的性质:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心.也考查了圆周角定理和圆内接四边形的性质.
计算题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )