试题
题目:
如图,在扇形OACB中,∠AOB=120°,⊙O′为弓形ACB的最大的内切圆,若AB的长为2π,则⊙O′的周长为
3
4
3
4
.
答案
3
4
解:如图,
连接OO′交AB分别于点D,交弧AB于点C,
∵AB的长为2π,
∴由弧长公式得OA=3,
∵∠AOB=120°,
∴∠AOD=60°,
∵OC⊥AB,
∴∠ADO=90°,
∴∠OAD=30°,
∴OA=2OD,
∴OD=1.5,
∵OC=3,
∴CD=1.5,
∴CO′=
3
4
.
故答案为:
3
4
.
考点梳理
考点
分析
点评
专题
切线的性质;垂径定理.
连接OO′交弧AB、AB分别于点C、D,根据切线的性质和垂径定理得AD的长,从而求得⊙O′的半径.
本题考查了切线的性质、垂径定理和弧长公式,是基础知识要熟练掌握.
计算题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )