试题
题目:
如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP.若阴影部分的面积为16π,则弦AB的长为
8
8
.
答案
8
解:如图,过O点作OD⊥AB,垂足为D,连接PC,AO,
设⊙O的半径为R,⊙P的半径为r,
∵AB与⊙P相切于C点,
∴PC⊥AB,PC=r,
又OP∥AB,
∴OD=PC=r,
由已知阴影部分面积为16π,得
π(R
2
-r
2
)=16π,即R
2
-r
2
=16,
∴AO
2
-OD
2
=R
2
-r
2
=16,
在Rt△AOD中,由勾股定理得AD
2
=AO
2
-OD
2
=16,
即AD=4,
由垂径定理可知AB=2AD=8.
故答案为:8.
考点梳理
考点
分析
点评
专题
切线的性质;勾股定理;垂径定理.
如图,过O点作OD⊥AB,垂足为D,连接PC,AO,设⊙O的半径为R,⊙P的半径为r,由直线与圆相切的性质可知PC=r,又OP∥AB,则OD=PC=r,阴影部分面积可表示为π(R
2
-r
2
)=π(AO
2
-OD
2
),由已知可求AO
2
-OD
2
的值,在Rt△AOD中,由勾股定理可求AD,由垂径定理可知AB=2AD.
本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
计算题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )