试题
题目:
如图,PA、PB是⊙O的切线,切点为A、B,C是⊙O上的一点,已知∠APB=76°,则∠ACB=
52°
52°
.
答案
52°
解:
连接OB、OA、
∵PA、PB是⊙O的切线,切点为A、B,
∴∠PBO=∠PAO=90°,
∵∠APB=76°,
∴∠AOB=360°-∠PBO-∠PAO-∠APB=104°,
∴由圆周角定理得:∠ACB=
1
2
∠AOB=
1
2
×104°=52°,
故答案为:52°.
考点梳理
考点
分析
点评
切线的性质.
连接OB、OA、由切线性质得出∠PBO=∠PAO=90°,求出∠AOB的度数,根据圆周角定理得出∠ACB=
1
2
∠AOB,求出即可.
本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数和得出∠ACB=
1
2
∠AOB.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )