试题
题目:
如图,EB、EC是⊙O的两条切线,B、C为切点,A是⊙O上的任意一点,若∠A=70°,则∠E=
40°
40°
.
答案
40°
解:连接OB,OC.
则∠BOC=2∠A=2×70=140°,
∵EB、EC是⊙O的两条切线,
∴∠EBO=∠ECO=90°,
∴∠E=360°-∠BOC-∠EBO-∠ECO=360°-140°-90°-90°=40°.
故答案是:40°.
考点梳理
考点
分析
点评
切线的性质.
连接OB,OC,根据圆周角定理即可求得∠BOC的度数,根据切线的性质可以求得∠EBO=∠ECO,在四边形BECO中,利用内角和定理即可求解.
本题考查了切线的性质定理以及圆周角定理,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )