试题
题目:
(2010·东莞)如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)计算弦AB的长.
答案
解:(1)∵PA与⊙O相切于A点,
∴△OAP是直角三角形,
∵OA=2,OP=4,
∴cos∠POA=
OA
OP
=
1
2
,
∴∠POA=60°.
(2)∵直角三角形中∠AOC=60°,OA=2,
∴AC=OA·sin60°=2×
3
2
=
3
.
∵AB⊥OP,
∴AB=2AC=2
3
.
解:(1)∵PA与⊙O相切于A点,
∴△OAP是直角三角形,
∵OA=2,OP=4,
∴cos∠POA=
OA
OP
=
1
2
,
∴∠POA=60°.
(2)∵直角三角形中∠AOC=60°,OA=2,
∴AC=OA·sin60°=2×
3
2
=
3
.
∵AB⊥OP,
∴AB=2AC=2
3
.
考点梳理
考点
分析
点评
专题
切线的性质.
(1)根据PA与⊙O相切于A点可知,OA⊥AP,再依据锐角三角函数的定义即可求出;
(2)根据直角三角形中∠AOC=60°,OA=2可求出AC的长,再根据垂径定理即可求出弦AB的长.
本题考查了圆的切线性质,及三角函数的定义及特殊角的三角函数值.
压轴题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )