试题
题目:
(2010·株洲)如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.
求证:(1)∠CAB=∠BOD;
(2)△ABC≌△ODB.
答案
证明:(1)∵AB是⊙O的直径,
∴∠ACB=90°,由∠ABC=30°,
∴∠CAB=60°,
又OB=OC,
∴∠OCB=∠OBC=30°,
∴∠BOD=60°,
∴∠CAB=∠BOD.
(2)在Rt△ABC中,∠ABC=30°,得AC=
1
2
AB,
又OB=
1
2
AB,
∴AC=OB,
由BD切⊙O于点B,得∠OBD=90°,
在△ABC和△ODB中,
∴△ABC≌△ODB.
证明:(1)∵AB是⊙O的直径,
∴∠ACB=90°,由∠ABC=30°,
∴∠CAB=60°,
又OB=OC,
∴∠OCB=∠OBC=30°,
∴∠BOD=60°,
∴∠CAB=∠BOD.
(2)在Rt△ABC中,∠ABC=30°,得AC=
1
2
AB,
又OB=
1
2
AB,
∴AC=OB,
由BD切⊙O于点B,得∠OBD=90°,
在△ABC和△ODB中,
∴△ABC≌△ODB.
考点梳理
考点
分析
点评
专题
切线的性质;全等三角形的判定;圆周角定理.
(1)根据直径所对的圆周角是直角及∠ABC=30°可知∠CAB=60°,然后由圆周角定理可知∠AOC=60°,再根据对顶角相等即可解答.
(2)根据直角三角形的性质求出AC=OB,再由ASA定理即可求出△ABC≌△ODB.
本题考查了圆的切线性质、直角三角形的性质、三角形全等的判定方法及圆周角定理的相关知识,有一定的综合性,但难度不大.
证明题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )