试题

题目:
青果学院如图:水平地面上有一个球,现用如下方法测量球的表面积(球的表面积公式S=4πR2),用锐角∠BAC=60°的直角三角板的斜边紧靠球面,P为切点,一条直角边AC紧靠地面,并使三角板与地面垂直,如果测得PA=1m,则球的表面积等于
12π
12π

答案
12π

青果学院解:连接OA,∵AB与AD都为圆O的切线,
∴∠OPA=90°,∠ODA=90°,
∵∠BAC=60°,∴∠PAD=120°,
∵PA、AD都是⊙O的切线,
∴∠OAP=
1
2
∠PAD=60°,
在Rt△OPA中,PA=1cm,tan60°=
OP
AP

则OP=APtan60°=
3
cm,即⊙O的半径R为
3
cm.
则球的表面积S=4πR2=4π·(
3
)
2
=12π.
故答案为:12π
考点梳理
切线的性质.
连接OA,由AP与AD为圆O的切线,根据切线性质得到∠OPA与∠ODA都为直角,由∠BAC=60°,根据平角定义得到∠PAD为120°,再根据切线长定理得到∠OAP等于∠PAD的一半,得出∠OAP=60°,在直角三角形OAP中,根据锐角三角函数定义得出OP=APtan60°,进而求出OP的长,即为半径R,代入球的表面积公式即可求出.
此题考查了切线的性质,切线长定理,以及锐角三角函数,见了有切线,圆心切点连,构造直角三角形解决问题,其中切线长定理为:经过圆外一点引圆的两条切线,切线长相等,且此点与圆心地连线平分两切线的夹角,灵活运用此定理是本题的突破点.
综合题.
找相似题