切线的性质.
由图知,要求的面积有两部分:
①三角形的内部被圆滚过的部分是个三角形,且与原三角形相似,已知了原三角形的周长和面积,可求得原三角形的内切圆半径,进而可得三角形内部被圆滚过部分的三角形的内切圆半径,即可得到两个三角形的相似比,根据相似三角形的性质可求得此三角形的周长和面积;
②三角形边界的三个角的面积;连接单位圆的圆心和原三角形的三顶点,先求得构成的6个小直角三角形的面积,而3个扇形正好构成一个圆,由此可得原三角形边界三个角的面积;
综合①②的面积,即可得所求的值.
此题主要考查的是图形面积的求法,涉及到切线的性质、扇形面积的计算方法、相似三角形以及三角形内切圆半径的求法等知识;需要注意的有两点:
①被圆滚过的三角形内部的三角形与原三角形相似,②原三角形边界的三个扇形正好构成一个单位圆.