试题
题目:
PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为
60°或120°
60°或120°
.
答案
60°或120°
解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=60°,
∴在四边形AOBP中,∠AOB=360°-90°-90°-60°=120°,
∴∠ADB=
1
2
×∠AOB=
1
2
×120°=60°,
即当C在D处时,∠ACB=60°.
在四边形ADBC中,∠ACB=180°-∠ADB=180°-60°=120°.
于是∠ACB的度数为60°或120°,
故答案为:60°或120°.
考点梳理
考点
分析
点评
切线的性质.
连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )