试题
题目:
(2007·长宁区一模)在直角△ABC中,∠C=90°,AC=3,BC=4,那么以C为圆心与AB相切的圆的半径是
12
5
12
5
.
答案
12
5
解:如图:连接CD,
∵AB是⊙C的切线,
∴CD⊥AB,
∵在直角△ABC中,∠C=90°,AC=3,BC=4,
∴AB=5,
∵S
△ABC
=
1
2
AC·BC=
1
2
AB·CD,
∴AC·BC=AB·CD,
即CD=
AC·BC
AB
=
3×4
5
=
12
5
.
故答案为:
12
5
.
考点梳理
考点
分析
点评
切线的性质;勾股定理.
首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S
△ABC
=
1
2
AC·BC=
1
2
AB·CD,即可求得以C为圆心与AB相切的圆的半径的长.
此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )