试题

题目:
青果学院(2010·福鼎市质检)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=48°,则∠C=
21
21
°.
答案
21

青果学院解:如右图所示,连接OB,
∵AB是切线,
∴∠ABO=90°,
又∵∠A=48°,
∴∠AOB=90°-48°=42°,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠AOB=2∠C,
∴∠C=
1
2
×42°=21°.
故答案是:21°
考点梳理
切线的性质;圆周角定理.
连接OB,由于AB是切线,那么∠ABO=90°,而∠A=48°,易求∠AOB,而OB=OC,那么∠OBC=∠OCB,利用三角形外角性质,可知∠AOB=2∠C,易求∠C.
本题考查了切线的性质、三角形外角性质.解题的关键是连接OB,构造直角三角形.
计算题.
找相似题