试题
题目:
(2013·道里区三模)如图,TP、TQ为⊙O的两条切线,P、Q为切点,点R在圆上的位置如图所示,若∠PTQ=60°,则∠PRQ为
60
60
度.
答案
60
解:连接OP,OQ,
∵TP、TQ为⊙O的两条切线,P、Q为切点,
∴OP⊥TP,OQ⊥TQ,
∴∠OPT=∠OQT=90°,
∵∠PTQ=60°,
∴∠POQ=360°-∠PTQ-∠OPT-∠OQT=120°,
∴∠PRQ=
1
2
∠POQ=60°.
故答案为:60.
考点梳理
考点
分析
点评
切线的性质.
首先连接OP,OQ,由TP、TQ为⊙O的两条切线,P、Q为切点,可得OP⊥TP,OQ⊥TQ,又由∠PTQ=60°,可求得∠POQ的度数,然后由圆周角定理,即可求得∠PRQ的度数.
此题考查了切线的性质与圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )