试题
题目:
(2013·梅列区模拟)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于
40°
40°
.
答案
40°
解:
连接OC,
∵DC切⊙O于C,
∴∠OCD=90°,
∵弧BC对的圆周角是∠A,对的圆心角是∠COB,
∴∠COB=2∠A=50°,
∴∠D=180°-∠DCO-∠COB=40°,
故答案为:40°.
考点梳理
考点
分析
点评
切线的性质.
连接OC,根据圆周角定理求出∠COB,根据切线性质得出∠OCD=90°,根据三角形内角和定理求出即可.
本题考查了圆周角定理,三角形内角和定理,切线的性质的应用,主要考查了推理能力.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )