试题
题目:
(2002·海南)已知:⊙O的半径为1,M为⊙O外的一点,MA切⊙O于点A,MA=1.若AB是⊙O的弦,且AB=
2
,则MB的长度为
1或
5
1或
5
.
答案
1或
5
解:分两种情况考虑:
①当AB和MA在圆心的同侧时,根据圆的半径是1,AB=
2
,得∠AOB=90°,则OB∥AM.
OB=AM,则四边形AOBM是平行四边形.
又∠AOB=90°,OA=OB,
则四边形AOBM是正方形,
所以BM=1;
②当AB和MA在圆心的两侧时,作BD⊥MA于D,则MD=2,根据勾股定理得MB=
5
.
考点梳理
考点
分析
点评
专题
切线的性质;勾股定理.
本题应分情况考虑:
①当AB和MA在圆心的同侧时,证四边形AOBM是正方形.
②当AB和MA在圆心的两侧时,作BD⊥MA于D,则MD=2,根据勾股定理得MB=
5
.
此题应特别注意两种情况,计算的时候,注意综合运用正方形的判定和性质.
压轴题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )