试题
题目:
(2007·河南)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P=
50
50
度.
答案
50
解:连接OA,OB.
PA、PB切⊙O于点A、B,则∠PAO=∠PBO=90°,
由圆周角定理知,∠AOB=2∠C=130°,
∵∠P+∠PAO+∠PBO+∠AOB=360°,
∴∠P=180°-∠AOB=50°.
考点梳理
考点
分析
点评
切线的性质;圆周角定理.
连接OA,OB.根据圆周角定理和四边形内角和定理求解.
本题利用了切线的概念,圆周角定理,四边形的内角和为360度求解.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )