试题

题目:
在Rt△ABC中,∠C=90゜,AC=5,BC=12,以C为圆心,R为半径作圆与斜边AB相切,求R的值.
答案
青果学院解:Rt△ABC中,∠C=90°,AC=5,BC=12;
由勾股定理,得:AB2=52+122=169,
∴AB=13;
∵S△ABC=
1
2
AC·BC=
1
2
AB·R;
∴R=
AC·BC
AB
=
60
13

青果学院解:Rt△ABC中,∠C=90°,AC=5,BC=12;
由勾股定理,得:AB2=52+122=169,
∴AB=13;
∵S△ABC=
1
2
AC·BC=
1
2
AB·R;
∴R=
AC·BC
AB
=
60
13
考点梳理
切线的性质;勾股定理.
R的长即为斜边AB上的高,由勾股定理易求得AB的长,根据直角三角形面积的不同表示方法,即可求出R的值.
本题考查的知识点有:切线的性质、勾股定理、直角三角形面积的求法;斜边上的高即为圆的半径是本题的突破点.
找相似题