试题
题目:
如图,Rt△ABC中,∠C=90°,AC=4.BC=3,点M是AB上一点,以M为圆心作⊙M,
(1)若⊙M经过A、C两点,求⊙M的半径,并判断点B与⊙M的位置关系.
(2)若⊙M和AC、BC都相切,求⊙M的半径.
答案
解:(1)∵⊙M经过A、C两点,
∴M在AC的垂直平分线上,
设点D是AC的中点,连接CM,DM,
∴DM∥BC,
∴AM:BM=AD:CD=1,
∴M是AB的中点,
∴AM=CM=BM,
连接CM,
∵Rt△ABC中,∠C=90°,AC=4,BC=3,
∴AB=
A
C
2
+B
C
2
=5,
∴CM=
1
2
AB=2.5,
∴⊙M的半径为2.5,点B在⊙M上.
(2)连接EM,FM,
∵⊙M和AC、BC都相切,
∴ME⊥AC,MF⊥BC,CE=CF,
∵∠C=90°,
∴四边形CEMF是正方形,
设EM=x,则CE=x,
∴AE=AC-CE=4-x,
∵△AEM∽△ACB,
∴AE:AC=EM:BC,
∴
4-x
4
=
x
3
,
解得:x=
12
7
.
即⊙M的半径为
12
7
.
解:(1)∵⊙M经过A、C两点,
∴M在AC的垂直平分线上,
设点D是AC的中点,连接CM,DM,
∴DM∥BC,
∴AM:BM=AD:CD=1,
∴M是AB的中点,
∴AM=CM=BM,
连接CM,
∵Rt△ABC中,∠C=90°,AC=4,BC=3,
∴AB=
A
C
2
+B
C
2
=5,
∴CM=
1
2
AB=2.5,
∴⊙M的半径为2.5,点B在⊙M上.
(2)连接EM,FM,
∵⊙M和AC、BC都相切,
∴ME⊥AC,MF⊥BC,CE=CF,
∵∠C=90°,
∴四边形CEMF是正方形,
设EM=x,则CE=x,
∴AE=AC-CE=4-x,
∵△AEM∽△ACB,
∴AE:AC=EM:BC,
∴
4-x
4
=
x
3
,
解得:x=
12
7
.
即⊙M的半径为
12
7
.
考点梳理
考点
分析
点评
切线的性质;点与圆的位置关系.
(1)设点D是AC的中点,连接CM,DM,易得CM=AM=BM,继而求得⊙M的半径,并判断点B与⊙M的位置关系.
(2)首先连接EM,FM,可得四边形CEMF是正方形,设EM=x,则CE=x,由△AEM∽△ACB,根据相似三角形的对应边成比例求得答案.
此题考查了切线的性质、相似三角形的判定与性质、勾股定理以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )