答案

解:如图,设切点为P,小正方形在圆上的顶点分别为C,D,
连接CD,OD,OP,OP与CD交于E,则OP⊥AB,
故OP⊥CD,E为CD中点,设半径为r,
在Rt△ODE中,DE=b,OD=r,OE=r-a,
∴根据勾股定理得:(r-a)
2+b
2=r
2,
∴r=
,
则d=2r=
.

解:如图,设切点为P,小正方形在圆上的顶点分别为C,D,
连接CD,OD,OP,OP与CD交于E,则OP⊥AB,
故OP⊥CD,E为CD中点,设半径为r,
在Rt△ODE中,DE=b,OD=r,OE=r-a,
∴根据勾股定理得:(r-a)
2+b
2=r
2,
∴r=
,
则d=2r=
.