试题
题目:
如图,AC是⊙O的直径,四边形ABCD是平行四边形,AD,BC分别交⊙O于点F,E,连接AE,CF.
(1)试判断四边形AECF是哪种特殊的四边形,并说明理由;
(2)若AB与⊙O相切于点A,且⊙O的半径为5cm,弦CE的长为8cm,求AB的长.
答案
解:(1)四边形AECF是矩形.理由如下:
∵AC是⊙O的直径,
∴∠AEC=∠AFC=90°,
∵四边形ABCD是平行四边形,
∴AF∥EC,
∴∠EAC=∠AEC=90°,
∴四边形AECF是矩形
(2)∵AB与⊙O相切于点A,
∴∠BAC=90°,
∵∠ACE=∠BCA,
∴Rt△CAE∽Rt△CBA,
∴CA:CB=CE:CA,即10:CB=8:10,
∴BC=
25
2
,
在Rt△ABC中,AB=
B
C
2
-A
C
2
=
15
2
.
解:(1)四边形AECF是矩形.理由如下:
∵AC是⊙O的直径,
∴∠AEC=∠AFC=90°,
∵四边形ABCD是平行四边形,
∴AF∥EC,
∴∠EAC=∠AEC=90°,
∴四边形AECF是矩形
(2)∵AB与⊙O相切于点A,
∴∠BAC=90°,
∵∠ACE=∠BCA,
∴Rt△CAE∽Rt△CBA,
∴CA:CB=CE:CA,即10:CB=8:10,
∴BC=
25
2
,
在Rt△ABC中,AB=
B
C
2
-A
C
2
=
15
2
.
考点梳理
考点
分析
点评
切线的性质;平行四边形的性质;圆周角定理.
(1)根据圆周角定理得到∠AEC=∠AFC=90°,再根据平行四边形的性质得AF∥EC,所以∠EAC=∠AEC=90°,于是可判断四边形AECF是矩形;
(2)根据切线的性质得∠BAC=90°,再证明Rt△CAE∽Rt△CBA,利用CA:CB=CE:CA可计算出BC,然后根据勾股定理可计算出AB.
本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理、平行四边形的性质以及三角形相似的判定与性质.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )