试题

题目:
青果学院如图,△ABC内接于⊙O,AB=BC,过点A的切线与OC的延长线相交于点D,∠BAC=75°,CD=
3
,则AD的长为(  )



答案
B
青果学院解:连接OA,
∵AB=BC,∠BAC=75°,
∴∠BCA=∠BAC=75°,
∴∠B=30°,
∴∠AOD=2∠B=60°,
∵AD是⊙O的切线,
∴OA⊥AD,
∴OD=2OA,
∵CD=
3

设OA=x,则OD=x+
3

∴2x=x+
3

解得:x=
3

∴OA=
3

∴AD=
3
OA=3.
故选B.
考点梳理
切线的性质.
首先连接OA,由AB=BC,∠BAC=75°,可求得∠B的度数,又由圆周角定理,即可求得∠O的度数,然后由切线的性质,求得OA⊥AC,然后由直角三角形的性质,求得答案.
此题考查了切线的性质、圆周角定理以及直角三角形三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
找相似题