试题
题目:
如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,小圆半径r=1,则点B到直线AO的距离为( )
A.2
B.
2
C.
3
D.2.5
答案
C
解:连结OC,作BH⊥AO于H,如图
,
∵大圆的弦AB切小圆于点C,
∴OC⊥AB,
∴AC=BC,
∵OA=OB,∠AOB=120°,
∴∠A=30°,
在Rt△AOC中,OC=1,AC=
3
OC=
3
,
∴AB=2AC=2
3
,
在Rt△ABH中,BH=
1
2
AB=
3
.
故选C.
考点梳理
考点
分析
点评
专题
切线的性质;垂径定理.
连结OC,作BH⊥AO于H,由大圆的弦AB切小圆于点C,根据切线的性质得OC⊥AB,则根据垂径定理得到AC=BC,易得∠A=30°,然后根据含30度的直角三角形三边的关系求出AC、AB,再得到BH.
本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理和含30度的直角三角形三边的关系.
计算题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )