试题

题目:
青果学院如图,已知PA、PB、DE分别切⊙O于A、B、C三点,若PO=13cm,△PDE的周长为24cm,∠APB=40°,求:
(1)⊙O的半径; 
(2)∠EOD的度数.
答案
青果学院解:(1)连接OB,
∵PA、PB、DE分别切⊙O于A、B、C三点,
∴OB⊥PB,PB=PA,BD=CD,CE=AE,
∴△PDE的周长为:PD+DE+PE=PD+DC+CE+PE=PD+BD+AE+PE=PB+PA=2PB=24cm,
∴PB=PA=12cm,
在Rt△PBO中,OB=
OP2-PB2
=
132-122
=5(cm),
即⊙O的半径为5cm;

(2)连接OB,OA,
∵PA、PB、DE分别切⊙O于A、B、C三点,
∴OB⊥PB,OA⊥PA,∠BOD=∠COD=
1
2
∠BOC,∠COE=∠AOE=
1
2
∠AOC,
∵∠APB=40°,
∴∠AOB=360°-90°-90°-40°=140°,
∴∠DOE=∠COD+∠COE=
1
2
(∠BOC+∠AOC)=
1
2
∠BOC=70°.
青果学院解:(1)连接OB,
∵PA、PB、DE分别切⊙O于A、B、C三点,
∴OB⊥PB,PB=PA,BD=CD,CE=AE,
∴△PDE的周长为:PD+DE+PE=PD+DC+CE+PE=PD+BD+AE+PE=PB+PA=2PB=24cm,
∴PB=PA=12cm,
在Rt△PBO中,OB=
OP2-PB2
=
132-122
=5(cm),
即⊙O的半径为5cm;

(2)连接OB,OA,
∵PA、PB、DE分别切⊙O于A、B、C三点,
∴OB⊥PB,OA⊥PA,∠BOD=∠COD=
1
2
∠BOC,∠COE=∠AOE=
1
2
∠AOC,
∵∠APB=40°,
∴∠AOB=360°-90°-90°-40°=140°,
∴∠DOE=∠COD+∠COE=
1
2
(∠BOC+∠AOC)=
1
2
∠BOC=70°.
考点梳理
切线的性质.
(1)首先连接OB,由PA、PB、DE分别切⊙O于A、B、C三点,根据切线的性质与切线长定理,即可证得OB⊥PB,PB=PA,BD=CD,CE=AE,又由△PDE的周长为24cm,即可求得PB的长,然后利用勾股定理,求得⊙O的半径;
(2)首先连接OB,OA,由PA、PB、DE分别切⊙O于A、B、C三点,根据切线的性质与切线长定理,即可得OB⊥PB,OA⊥PA,∠BOD=∠COD=
1
2
∠BOC,∠COE=∠AOE=
1
2
∠AOC,继而求得答案.
此题考查了切线的性质、切线长定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
找相似题