试题
题目:
如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(-4,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为( )
A.
7
B.2
2
C.3
D.4
答案
A
解:连接OP、OQ.
∵PQ是⊙O的切线,
∴OQ⊥PQ;
根据勾股定理知PQ
2
=OP
2
-OQ
2
,
∵当PO⊥AB时,线段PQ最短;
又∵A(-4,0)、B(0,4),
∴OA=OB=4,
∴AB=4
2
∴OP=AB=2
2
,
∴PQ=
7
.
故选A.
考点梳理
考点
分析
点评
专题
切线的性质;坐标与图形性质.
连接OP.根据勾股定理知PQ
2
=OP
2
-OQ
2
,因为OQ是定值,所以当OP⊥AB时,线段OP最短,即线段PQ最短.
本题考查了切线的判定与性质、坐标与图形性质以及矩形的性质等知识点.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角来解决有关问题.
压轴题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )