试题
题目:
如图,P是圆D的直径AB的延长线上的一点,PC与圆D相切于点C,∠APC的平分线交AC于点Q,则∠PQC=( )
A.30°
B.45°
C.50°
D.60°
答案
B
解:连接BC交PQ于E,
∵PC与圆D相切于点C,
∴∠PCB=∠A,
∵AB为直径,
∴∠ACB=90°,
∵PQ平分∠APC,
∴∠APQ=∠QPC,
∵∠CQP=∠A+∠APQ,∠CEQ=∠PCB+∠QPC,
∴∠CQP=∠CEQ=
180°-90°
2
=45°.
故选B.
考点梳理
考点
分析
点评
切线的性质;圆周角定理.
首先连接BC交PQ于E,由PC与圆D相切于点C,根据弦切角定理,即可得∠PCB=∠A,又由AB为直径,即可得∠ACB=90°,然后由PQ平分∠APC与三角形外角的性质(∠CQP=∠A+∠APQ,∠CEQ=∠PCB+∠QPC),即可证得∠CQP=CEQ,则可求得∠PQC的度数.
此题考查了圆的切线的性质,圆周角的性质,弦切角定理,等腰直角三角形的性质,以及三角形外角的性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )