试题
题目:
(2008·上城区模拟)如图,AT是⊙O的切线,AB是⊙O的弦,∠B=55°,则∠BAT等于( )
A.45°
B.40°
C.35°
D.30°
答案
C
解:连接OA,则∠AOB=2∠BAT,OA⊥AT,
∵OA⊥AT,
∴∠OAT=90°,
∴∠OAB=90°-∠BAT,
∵∠B+∠AOB+∠OAB=180°,
∴∠B+2∠BAT+90°-∠BAT=180°,
解得∠BAT=35°.
故选C.
考点梳理
考点
分析
点评
专题
切线的性质.
连接OA,则∠AOB=2∠BAT,∠OAT=90°,故可用∠BAT表示出∠OAB的度数,再根据三角形的内角和定理解答即可.
本题考查的是切线的性质及三角形内角和定理,解答此类问题往往通过作辅助线连接圆心和切点,利用垂直关系求解.
探究型.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )