试题
题目:
(2010·下城区模拟)如图,△ABC中,∠B=∠C=30°,点D是BC边上一点,以AD为直径的⊙O恰与BC边相切,⊙O交A
B于E,交AC于F.过O点的直线MN分别交线段BE和CF于M,N,若AM:MB=3:5,则FC:AF的值为( )
A.3:1
B.5:3
C.2:1
D.5:2
答案
A
解:∵∠B=∠C=30°,⊙O恰与BC边相切,AD⊥BC,
∴AB=AC=2AD=2×2r=4r;
连接OE,则OE=OA,
又∵∠BAD=(180°-30°-30°)÷2=60°,
∴OA=AE=OE=r,
同理,AF=r.
则FC=AC-AF=4r-r=3r.
∴FC:AF=3r:r=3.
故选A.
考点梳理
考点
分析
点评
切线的性质;等腰三角形的性质.
根据题意,利用特殊角度建立AF与半径、AC与半径之间的关系,从而求解.
根据切线性质,判断出AD⊥BC,根据∠B=∠C=30°,判断出AB=AC,灵活运用等腰三角形的性质和勾股定理解答.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )