试题

题目:
青果学院(2011·晋江市质检)如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点,若两圆的半径分别是10cm、6cm,则弦AB的长为(  )



答案
A
青果学院解:连接OC、OA,
∵AB切⊙O于C,
∴OC⊥AB,
∴AB=2AC;
∵在Rt△OAC中,OA=10cm,OC=6cm,
∴AC=
OA2-OC2
=8cm,
∴AB=2AC=16cm.
故选A.
考点梳理
切线的性质;勾股定理.
连接OC、OA;由切线的性质知:OC⊥AB;在Rt△OAC中,可由勾股定理求得AC的长;根据垂径定理知:AB=2AC,由此得解.
此题主要考查了切线的性质、垂径定理以及勾股定理的应用.通过运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
数形结合.
找相似题