试题
题目:
(1998·山东)如图,在⊙O中,AB为⊙O的直径,AD为弦,过B点的切线与AD的延长线交于点C,若AD=DC.则sin∠ACO等于( )
A.
10
10
B.
2
10
C.
5
5
D.
2
4
答案
A
解:连接BD,作OE⊥AD.
AB是直径,则BD⊥AC.
∵AD=CD,
∴△BCD≌△BDA,BC=AB.
BC是切线,点B是切点,
∴∠ABC=90°,即△ABC是等腰直角三角形,∠A=45°,OE=
2
2
AO.
由勾股定理得,CO=
5
OB=
5
AO,所以sin∠ACO=
EO
CO
=
10
10
.
考点梳理
考点
分析
点评
专题
切线的性质.
连接BD,作OE⊥AD.在Rt△OEC中运用三角函数的定义求解.
本题利用了切线的性质,等腰直角三角形的判定和性质,勾股定理,正弦的概念求解.
压轴题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )