试题
题目:
(2009·绵阳)一个钢管放在V形架内,如图是其截面图,O为钢管的圆心.如果钢管的半径为25cm,∠MPN=60°,则OP=( )
A.50cm
B.25
3
cm
C.
50
3
3
cm
D.50
3
cm
答案
A
解:∵圆与V形架的两边相切,
∴△OMP是直角三角形中∠OPN=
1
2
∠MPN=30°,
∴OP=2ON=50CM.
故选A.
考点梳理
考点
分析
点评
专题
切线的性质;含30度角的直角三角形.
钢管放在V形架内,则钢管所在的圆与V形架的两边相切,根据切线的性质可知△OMP是直角三角形,且∠OPM=∠OPN=30°,根据三角函数就可求出OP的长.
本题主要考查了切线的性质定理,解题的关键是将此问题转化为解直角三角形的问题来解决.
压轴题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )