试题

题目:
青果学院(2010·鞍山)如图,直线PB切⊙O于点B,PO交⊙O于点C,若PB=2
3
,PC=2,则∠BAC为(  )



答案
B
青果学院解:如右图所示,连接BC,
设⊙O的半径是x,∵BP是切线,∴∠OBP=90°,
在Rt△OBP中,有x2+(2
3
2=(x+2)2
解得x=2,
∴OC=CP,
∴BC=
1
2
OP=2,
∴OB=OC=BC,
∴△OBC是等边三角形,
∴∠OBC=60°,
∴∠CBP=90°-60°=30°,
∴∠A=∠CBP=30°.
故选B.
考点梳理
切线的性质;勾股定理;圆周角定理.
连接BC,设⊙O的半径是x,由于BP是切线,可知∠OBP=90°,在Rt△OBP中,利用勾股定理可得x2+(2
3
2=(x+2)2,可求x,易知BC是直角三角形斜边的中线,从而有OB=OC=BC,那么△OBC是等边三角形,则∠OBC=60°,易求∠CBP,利用弦切角定理可求∠A.
本题考查了切线的性质、解方程、等边三角形的判定和性质、弦切角定理.解题的关键是连接BC,证明△OBC是等边三角形.
计算题;压轴题.
找相似题