试题
题目:
在⊙O中,已知⊙O的直径AB=2,弦长AC=
3
,AD=
2
,则∠CAD=
15°或75°
15°或75°
.
答案
15°或75°
解:本题分两种情况:(如图)
①当AD在AB上方时,连接BD、BC,
则∠ADB=∠ACB=90°,
Rt△ADB中,AD=
2
,AB=2,
∴∠DAB=45°,
Rt△ACB中,AC=
3
,AB=2,
∴∠CAB=30°,
∴∠CAD=∠DAB-∠CAB=15°,
②当AD在AB下方时,同①可求得∠CAD=75°,
故答案为:15°或75°.
考点梳理
考点
分析
点评
垂径定理;勾股定理.
本题大致的思路是连接BC、BD,分别在Rt△CAB和Rt△BAD中,求出∠CAD和∠CAB的度数,然后根据D点的不同位置分类讨论.
本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意分两种情况讨论,不要漏解,难度适中.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )