试题
题目:
如图,已知点C是
AB
的中点,半径OC与弦AB相交于D,如果∠OAB=60°,AB=8厘米,那么∠AOD=
30
30
度; CD=
8-4
3
8-4
3
厘米.
答案
30
8-4
3
解:如图,∵OA=OB,∠OAB=60°,
∴△AOB是等边三角形,则∠AOB=∠OAB=60°,AB=OA=8厘米.
又∵C是
AB
的中点,
∴∠AOD=
1
2
∠AOB=30°,AB⊥OC,
∴OD=OAcos30°=4
3
(厘米)
∴CD=OC-OD=OA-OD=8-4
3
(厘米).
故答案是:8-4
3
.
考点梳理
考点
分析
点评
垂径定理;勾股定理.
易证得△AOB是等边三角形,则∠AOB=∠OAB=60°,AB=OA=8厘米;由圆心角、弧、弦的关系可知∠AOD=
1
2
∠AOB=30°,所以通过解直角△AOD求得OD=4
3
厘米,故CD=OC-OD=OA-OD=8-4
3
(厘米).
本题考查了垂径定理、勾股定理.此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )