试题

题目:
青果学院如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为
(1,3)
(1,3)

答案
(1,3)

青果学院解:∵四边形OCDB是平行四边形,B(8,0),
∴CD∥OA,CD=OB=8
过点M作MF⊥CD于点F,则CF=
1
2
CD=4
过点C作CE⊥OA于点E,
∵A(10,0),
∴OE=OM-ME=OM-CF=5-4=1.
连接MC,则MC=
1
2
OA=5
∴在Rt△CMF中,由勾股定理得MF=
MC2-CF2
=
52-42
=3

∴点C的坐标为(1,3)
考点梳理
垂径定理;勾股定理;平行四边形的性质.
过点M作MF⊥CD于点F,则CF=
1
2
CD=4,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.
本题考查了勾股定理、垂径定理以及平行四边形的性质,是基础知识要熟练掌握.
计算题.
找相似题