试题
题目:
如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为
(1,3)
(1,3)
.
答案
(1,3)
解:∵四边形OCDB是平行四边形,B(8,0),
∴CD∥OA,CD=OB=8
过点M作MF⊥CD于点F,则CF=
1
2
CD=4
过点C作CE⊥OA于点E,
∵A(10,0),
∴OE=OM-ME=OM-CF=5-4=1.
连接MC,则MC=
1
2
OA=5
∴在Rt△CMF中,由勾股定理得
MF=
M
C
2
-C
F
2
=
5
2
-
4
2
=3
∴点C的坐标为(1,3)
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理;平行四边形的性质.
过点M作MF⊥CD于点F,则CF=
1
2
CD=4,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.
本题考查了勾股定理、垂径定理以及平行四边形的性质,是基础知识要熟练掌握.
计算题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )