试题

题目:
青果学院(2010·东台市模拟)如图,AB是⊙O的弦,OC⊥AB于C,若AB=2
3
cm
,OC=1cm,则⊙O的半径长为
2
2
cm.
答案
2

解:∵OC⊥AB于C,
∴AC=CB,
∵AB=2
3
cm,
∴AC=CB=
3
cm,
在Rt△AOC中,OC=1cm,
根据勾股定理,
OA=
12+(
3
)
2
=2
cm.
故应填2.
考点梳理
垂径定理;勾股定理.
已知AB和OC的长,根据垂径定理可得,AC=CB=
3
cm,在Rt△AOC中,根据勾股定理可以求出OA.
解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+(
a
2
2成立,知道这三个量中的任意两个,就可以求出另外一个.
找相似题