试题
题目:
(2013·福田区一模)如图所示,在⊙O中,点A在圆内,B、C在圆上,其中OA=7,BC=18,∠A=∠B=60°,则tan∠OBC=
2
3
9
2
3
9
.
答案
2
3
9
解:过O作OD⊥BC,延长AO,交BC于点E,
∵∠A=∠B=60°,
∴∠OED=60°,∠EOD=30°,
在Rt△ODE中,设DE=x,则OE=2x,OD=
3
x,
∵OD⊥BC,∴D为BC的中点,即BD=CD=
1
2
BC=9,
∵AE=BE,∴7+2x=9+x,
解得:x=2,即OD=2
3
,
∴tan∠OBC=
OD
BD
=
2
3
9
.
故答案为:
2
3
9
考点梳理
考点
分析
点评
专题
垂径定理;等边三角形的判定与性质;勾股定理.
过O作OD⊥BC,延长AO,交BC于点E,由∠A=∠B=60°,得到三角形ABE为等边三角形,确定出∠AEB与∠EOD的度数,在直角三角形ODE中,设DE=x,表示出OE与OD,根据AE=BE列出关于x的方程,求出方程的解得到x的值,确定出OD的长,
此题考查了垂径定理,勾股定理,以及等边三角形的判定与性质,熟练掌握定理是解本题的关键.
计算题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )