试题
题目:
(2013·太仓市二模)如图,点P在半径为5的半圆上运动,AB是⊙O直径,OC=3,当△ACP是等腰三角形时,点P到AB的距离是
2
6
或4.8
2
6
或4.8
.
答案
2
6
或4.8
解:分两种情况考虑:
(1)当AP=CP时,如图1所示,
过P作PQ⊥AB,可得AQ=CQ=4,
∴在Rt△PQO中,OP=5,OQ=5-4=1,
则根据勾股定理得:PQ=
5
2
-
1
2
=2
6
,即点P到AB的距离是2
6
;
(2)当AP=AC时,如图2所示,过P作PQ⊥AB,连接BP,由AB为圆O的直径,得到∠APB=90°,
在Rt△APB中,AB=10,AP=AC=8,根据勾股定理得:PB=6,
∵S
△APB
=
1
2
×AP×PB=
1
2
×AB×PQ,
∴PQ=
AP·BP
AB
=4.8,即点P到AB的距离是4.8,
综上,点P到AB的距离是2
6
或4.8.
故答案为:2
6
或4.8.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
分两种情况考虑:当AP=CP时,如图1所示,过P作PQ垂直于AB,求出PQ的长,即为P到AB的距离;当AP=AC时,连接PB,由AB为圆O的直径,利用直径所对的圆周角为直角得到三角形APB为直角三角形,利用勾股定理求出PB的长,利用面积法求出PQ的长,即为P到AB的距离.
此题考查了垂径定理,勾股定理,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键.
分类讨论.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )