试题
题目:
(2002·黄石)已知⊙O的半径OA=1,弦AB、AC的长分别是
2
、
3
,则∠BAC的度数是
15°或75°
15°或75°
.
答案
15°或75°
解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.
∵OE⊥AC,OD⊥AB,根据垂径定理得AE=
1
2
AC=
3
2
,AD=
1
2
AB=
2
2
,
∴sin∠AOE=
AE
AO
=
3
2
1
=
3
2
,sin∠AOD=
AD
OA
=
2
2
,
根据特殊角的三角函数值可得∠AOE=60°,∠AOD=45°,
∴∠BAO=45°,∠CAO=90°-60°=30°,
∴∠BAC=45°+30°=75°,
或∠BAC′=45°-30°=15°.
故答案为:15°或75°.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
根据垂径定理和勾股定理可得.
此题主要考查了垂径定理和勾股定理.注意要考虑到两种情况.
压轴题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )