试题
题目:
(2008·浦东新区二模)已知:如图,在⊙O中,弦CD与直径AB相交于点E,∠BED=60°,DE=OE=2.
求:(1)CD的长;(2)⊙O的半径.
答案
解:(1)过点O作OF⊥CD于点F.
∴DF=CF.(2分)
在△OEF中,
∵∠OFE=90°,∠OEF=60°,OE=2,∴EF=1.(2分)
∴CF=DF=DE+EF=3.
∴CD=6.(2分)
(2)连接OC.
在△OEF中,
∵∠OFE=90°,∠OEF=60°,OE=2,
∴OF=
3
.(2分)
在△OFC中,
∵∠OFC=90°,CF=3,OF=
3
,
∴OC=
2
3
.(2分)
解:(1)过点O作OF⊥CD于点F.
∴DF=CF.(2分)
在△OEF中,
∵∠OFE=90°,∠OEF=60°,OE=2,∴EF=1.(2分)
∴CF=DF=DE+EF=3.
∴CD=6.(2分)
(2)连接OC.
在△OEF中,
∵∠OFE=90°,∠OEF=60°,OE=2,
∴OF=
3
.(2分)
在△OFC中,
∵∠OFC=90°,CF=3,OF=
3
,
∴OC=
2
3
.(2分)
考点梳理
考点
分析
点评
垂径定理;勾股定理.
(1)过点O作OF⊥CD于点F,在△OEF中,利用三角函数即可求得EF的长,即可求得DF.根据垂径定理即可求解;
(2)在△OEF中,利用三角函数求得OF,然后在△OFC中,利用勾股定理即可求解.
此题综合运用了相交弦定理、垂径定理.关键是作辅助线,构造直角三角形求解.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )