垂径定理;全等三角形的判定;等腰三角形的判定.
此题解法较多,下面以拣两种常用的解法进行说明:
①连接OA、OB,由于OA、OB都是⊙O的半径,则OA=OB,且∠OAC=∠OBD,进而可得∠OAC=∠OBD,然后通过证△OAC≌△OBD得到OC=OD,即△OCD是等腰三角形的结论.
②过O作AB垂线,设垂足为M,由垂径定理可得AM=BM,已知AC=BD,那么CM=DM,即OM垂直平分线段CD,由此证得OC=OD,即△OCD为等腰三角形.
此题主要考查了垂径定理、全等三角形的判定和性质以及等腰三角形的判定等知识,难度不大.
证明题.