垂径定理;勾股定理.
由点D为弧AB的中点,根据垂径定理的推论得OD⊥AB,且∠AOD=
∠AOB=60°,再根据垂径定理得到AC=BC,且有CD=2,在Rt△AOC中根据含30度的直角三角形三边的关系得到若OC=x,则OA=2x,AC=
x,然后利用OD=2x得2x=2+x,解得x=1,所以AC=
,则AB=2AC=2
.
本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.也考查了含30度的直角三角形三边的关系.
计算题.