试题
题目:
已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.
答案
解:连接OB,
∵△ABC内接于⊙O,AO=5,
∴OB=OA=5,
∵∠ADB=90°,BC=8,
∴BD=
1
2
BC
=4,
∴OD=
O
B
2
-B
D
2
=3,
∴AD=AO+OD=8,
∴S
△ABC
=
1
2
BC×AD
=32.
解:连接OB,
∵△ABC内接于⊙O,AO=5,
∴OB=OA=5,
∵∠ADB=90°,BC=8,
∴BD=
1
2
BC
=4,
∴OD=
O
B
2
-B
D
2
=3,
∴AD=AO+OD=8,
∴S
△ABC
=
1
2
BC×AD
=32.
考点梳理
考点
分析
点评
垂径定理;勾股定理.
根据垂径定理可证BD=4,运用勾股定理可求OD=3,即求出AD,再运用三角形面积公式可求△ABC的面积.
解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )